
 1

Implementation of the UniFAFF framework for

Autonomic Fault-Management in ANA Networks

Ranganai Chaparadza, Nikolay Tcholtchev, Ina Schieferdecker

MOTION

Fraunhofer FOKUS Institute for Open Communication Systems

Berlin, Germany

{Ranganai.Chaparadza; Nikolay.Tcholtchev;Ina.Schieferdecker}@fokus.fraunhofer.de

Abstract— Research in the area of Self-Managing Networks is on

the rise. Some research initiatives are calling for clean-

slate/revolutionary designs of future networks (e.g. the future

internet) while some initiatives are calling for an evolutionary

approach and are focused on making today’s networks evolve by

introducing new communication paradigms into the network

models and architectures in an incremental way. For both types

of initiatives towards the design of future networks, one of the

most important questions being raised is: “How can the well

known and very successful FCAPS network management

framework be adopted and extended as necessitated by emerging

network architecture designs for Self-Managing Networks?”.

Recently, a framework called UniFAFF has emerged, that

answers the posed question with respect to moving from today’s

Fault-Management whose processes are not autonomic, to

making Fault-Management processes become autonomic as

necessitated by Self-Managing Networks. UniFAFF stands for

Unified Framework for Implementing Autonomic Fault-

Management and Failure-Detection for Self-Managing Networks.

This paper reports on the first attempt to implement the

UniFAFF framework for a clean-slate type of network design—

namely the ANA network architectural design.

Keywords — self-manging networks, Autonomic Network

Architetures, Autonomic Fault-Management and Failure-Detection

I. INTRODUCTION

The networking community is seeing a rise in research in
the area of Self-Managing Networks. Some research initiatives
are calling for clean-slate/revolutionary designs of future
networks (e.g. the future internet) while some initiatives are
calling for an evolutionary approach to future-internet design
and are focused on making today’s networks evolve by
introducing new communication paradigms into the network
models and architectures in an incremental way. For both types
of initiatives towards the design of future networks, one of the
most important questions being raised is: “How can the well
known and very successful FCAPS network management
framework [1] be adopted and extended as necessitated by
emerging network architecture designs for Self-Managing
Networks?”. Recently, a framework called UniFAFF [2] has
emerged, that answers the posed question with respect to
moving from today’s Fault-Management whose processes are
not autonomic, to making Fault-Management processes
become autonomic as necessitated by Self-Managing
Networks. UniFAFF stands for Unified Framework for

Implementing Autonomic Fault-Management and Failure-
Detection for Self-Managing Networks. UniFAFF defines a set
of criteria upon which the framework is founded and presents a
generic architecture created out of unifying related work and
understanding in the field of Fault-Management and Failure-
Detection. The UniFAFF calls for the design and evaluation of
the concepts, components and interfaces of its generic
architecture. The UniFAFF framework provides the following
understanding and definition: We talk about Autonomic Fault-
management and Failure-Detection when there are cooperative
and collaborative mechanisms implemented in nodes and the
network as a whole, to automatically detect faults, errors and
failures, share knowledge about such incidents, diagnose or
localize faults, as well as remove faults, throughout the
operation lifetime of a node and the network. A M.Sc. thesis
[3] was carried out as the first attempt to implement the
UniFAFF framework. In [3], some of the key components of
UniFAFF have been designed and evaluated, and the
algorithms proposed for incident information and alarms
dissemination to enable information/knowledge sharing among
network entities, have also been designed and evaluated - with
a focus on flooding and gossip algorithms. The components
and mechanisms developed in the thesis [3] were evaluated on
ANA networks [5]; a kind of networks which are based on
clean-slate type of network designs, though UniFAFF can also
be applied to today’s evolving networks. This paper briefly
describes the approach that has been taken in implementing
UniFAFF for ANA networks [4]. Due to limited space, we
point out only the key issues and point the reader to [2][3][4]
for more detailed information.

This paper is organized as follows: In Section II presents
ANA Networks in brief. Section III presents the UniFAFF
framework in brief. Section IV presents the Implementation of
Selected Key Components of the UniFAFF framework for
ANA Networks. Section V presents some Example Scenarios
for Autonomic Fault-Management. Section VI presents the
Evaluation of Selected Key Components of the UniFAFF
framework Implemented for ANA Networks. Section VII
gives some Conclusions and further work in implementing the
UniFAFF framework for clean-slate type of network designs.

II. ANA NETWORKS IN BRIEF

Autonomics in ANA, a clean-slate architecture, is mainly
introduced through a set of concepts that should enable the

 2

self-management of a system by allowing for dynamic
composition of node behaviors and network behaviors via the
use of functional composition frameworks intrinsically meant
to operate in the network nodes. One of the key concepts of
abstractions introduced in ANA is the concept of a Functional
Block (FB), which is basically a functional entity that by design
has the ability to
generate, consume,
process or forward
information
received on one or
more of its input
channels. An atomic
Functional Block,
as opposed to a
composite
Functional Block, is
called a Brick. So-
called Functional
composition
framework(s) [6]
governing the
composition of the
protocol stacks and
the overall
behaviors of the
nodes, facilitates the
ability for a node to
exercise reloading
faulty entities and
(re)-composing
different functional
entities and
behaviors of the
node as necessitated
by challenges in the
network operation
as well as context changes.
One of the most notable
and revolutionary ideas of ANA is the concept of flexible
protocol stacks. The other concept introduced in ANA is the
concept of a Compartment, which is defined as a policed set of
Functional Blocks (FBs), Information Dispatch Points (IDPs)
and Information Channels (ICs), which enables communication
for its members according to some commonly agreed set of
communication principles, protocols and policies. It can also be
thought of as a “realm”.

III. THE UNIFAFF FRAMEWORK IN BRIEF

UniFAFF stands for Unified Framework for Implementing

Autonomic Fault-Management and Failure-Detection for Self-

Managing Networks and comprises a set of components that

aim to facilitate Autonomic Fault-Management while

abstracting from the underlying network type. UniFAFF [2]

proposes to call this set of components the Failure Detection

Engine (FDE). The key principle behind the design of the

UniFAFF is as follows: “In a self-managing node or network,

Failure-Detection and Fault-Management must be co-

operatively and/or collaboratively handled by a number of

functional entities through the sharing of “knowledge” or

“information” about failures, errors, faults, their points of

occurrence or manifestations, their causality relationships,

dependency relationships between entities (protocols, services,

nodes, etc.) and context information etc. Functional entities

have to use all such knowledge in order to execute or co-

operatively request each other to execute some assigned fault-

management related functions. In an autonomic node or

network, there is a need for functional entities to co-operate

and/or collaborate in Fault-Detection, Error-Detection,

Failure-Detection and Fault-Localization since one entity may

be able to detect an incident within a time frame shorter that

other entities can detect it (if at all).”

Therefore, UniFAFF [2] addresses the following issues:

(A) The processes involved in Autonomic Fault-Management,
namely: (1) Automated Alarm-Generation; (2)
Automated Incident-Detection; (3) Automated Alarm/Fault/
Error/Failure Dissemination; (4) Automated and Collaborative
Fault-Diagnosis /Localization/Isolation; (5) Automated Fault-
Removal.

(B) The definition of a set of extensible criteria upon which the
UniFAFF framework is founded.

(C) The specification of “Requirements” that must be followed
by designers of functional entities of an autonomic node, such
as the designers of Functional Blocks for ANA nodes.

(D) The Meta-Models i.e. Information Models that describe the
kind of information/knowledge which needs to be generated
and shared among reactive entities of the autonomic
nodes/networks that act upon the information/knowledge. [3]
presents the design of the Meta-Models (i.e. Information
models) required by the UniFAFF framework.

(C) The provision of a Generic Architecture (see Figure 1) for
implementing autonomic fault-management and failure-

FDE - the internal view

The Autonomic Node Manager(ANM), Failure Detection Engine(FDE)
and Knowledge Repositories

The core reasoning functions of
the FDE initialise and control all the

internal components of the FDE and
also invoke some functions of the

FDE’s internal functional blocks. The

core functions may also query the
repositories for information.

Fault-Diagnosis/Localization/
Isolation (FDLI) functions,

including network
troubleshooting and
debugging functions

 The Incident Dissemination Services Part (IDSP) that implements Mechanisms or Protocols for: 1) the

dissemination and reception of information about local detected Faults/Errors/Failures and locally generated Alarms
to and from the network(e.g. using Gossip-based protocols/techniques, etc), 2) the dissemination of back-to-life/

recovery messages, as well as the reception, processing, and delivery of such messages to interested local entities, 3)

Reception and notification of external faults/errors/failures to FDE clients (local functional blocks), 4) delivery of
Alarms received from the network to the Autonomic Node Manager of the node or to other local interested registered

clients.

FDE, viewed as consisting of

interworking components/

functional blocks.

FDE

Autonomic Node

ANM

Local Incidents Registry

for: Local detected Faults/

Errors/Failures, which may

need dissemination to the
network or to specified
nodes/functional blocks External Incidents Registry for:

External entities, including Nodes,
currently reported to be experiencing

Faults/Errors/Failures and their
corresponding fault, error, or failure

description profiles. Like all the
other Repositories, the registry may
also be queried by local functional

blocks.

Asserted Incidents
Registry for: Asserted
Faults/Failures of local

entities deemed to be
faulty, erroneous or failing
by other entities outside

this node.

Local and External Alarms
Registry for: locally generated

Alarms, which may need
dissemination to the network,

as well as Alarms received
from the network.

Specialized Monitoring

Info-Repository
for:Knowledge supplied
by externally running

monitoring tasks(outside

the FDE)

CMRepo-Repository

for: Fault-Error-Failure
Causality Models/

Graphs

Repository (DMRepo) for:
Dependendability Models/
Graphs. The models are

created and stored by a
functional composition
logic(composer) or co-

operatively by all individual
functional blocks.

Direct communication with local
functional blocks(including

monitoring functional blocks)

that request for information
dissemination. Registred local

infromation receivers also

recieve info through this
interface

Some local functional blocks

generate Alarms, and may
request for alarm

dissermination to the network.
The repository may also be

queried by some local entities.

Local potential fault-detectors,
error-detectors and failure-

detectors supply information
and may clear the information

when the problem has

vanished.

Local functional
blocks create and

store models

during their
initilisation. Human

experts may also
edit and or add
new models or

more details.

Externally running
monitoring tasks

supply some
specialized

monitoring
information useful for
fault-diagnosis e.g.

link/path
characteristics, load

level, etc

Specialized incident detection

mechanisms e.g. monitoring-
based mechanisms or

protocols triggered by the
FDE

Local functional blocks request
the FDE to trigger specialized

incident detection mechanisms,

and/or register as clients
interested in receiving

information related to faults,

errors, failures or alarms

API-a

API-b

API-c

API-d

API-e

API-f

API-g

Local functional
blocks report

information about

external incidents.

API-h

Figure 1: The Generic Architecture of the UniFAFF framework for an Autonomic Node

 3

detection for self-managing networks. Note that the
architecture relates to a single autonomic/autonomous node.

For the ANA architecture, the FDE part of the UniFAFF
framework was further split into two parts namely: the
Challenge Detection Engine (CDE) that actually comprises of
all the repositories and the FDLI functions of the FDE, and the
Incident Information Dissemination Engine (IDE) part of the
FDE (i.e. the IDSP). [3] also presents some flooding and gossip
algorithms that were developed for the IDE. For more
information on the specifications of the API functions, as well
as mechanisms employed by the FDLI functions for distributed
fault-diagnosis we refer the reader to [3]. Figure 2 gives an
overview of the relations among the components implemented
for the ANA architecture, including the FDLI functions of the
FDE.

Figure 2: The relationships among the basic components

of the FDE

In order to illustrate the relationships between the fragments

on a lower level, the CDE boundaries have been left out of this

component view. The following roles and relations have been

defined among the objects in the diagram to aid

understanding:

• Relations

o Knowledge Share (ks) – this association

merely defines that two components are

sharing knowledge in a bidirectional or a

unidirectional way depending on the arrow

used to connect them.

o Provide Data (pd) – this relation specifies

that one object provides information to

another.

• Roles

o Storage (s) – this role is dedicated for the

repositories in order to mark them as the

instance(s) responsible for storing the

information.

o Knowledge Disseminator (kd) – this is the

task of the IDE in the system and establishes

it as the component responsible for

information dissemination.

o Data Provider (dp) – the role of the

repositories with respect to the FDLI block,

meaning that each repository has to provide

knowledge concerning incidents and alarms

and respectively notify the FDLI functions,

so that they can start a process of Fault-

Isolation upon the arrival of new

alarm/incident information.

o Data Recipient (dr) – the FDLI functions

act as a data recipient, “waiting” (the FDLI

is actually implemented as a library) to get

new incident information from the

repositories in order to start a Fault-

Diagnosis/Localization/Isolation. This

machinery is realized as a callback

mechanism.

The associations/roles in Figure 2 describe the relations

between the components and are meant to illustrate the general

fact that each system part can either passively provide

knowledge/data when being requested/queried or can actively

disseminate newly arrived data to the interested entities using

a kind of listener/callback mechanism.

IV. IMPLEMENTATION OF SELECTED KEY COMPONENTS

OF THE UNIFAFF FRAMEWORK FOR ANA NETWORKS

We considered the components for the storage of alarms,
faults, errors, and failures as well as the engine for their
dissemination as the vital basics for Autonomic Fault-
Management. Therefore, the main focus was set on the
implementation of the Local Incidents Registry, the External
Incidents Registry, the Asserted Incidents Registry, the Incident
Information Dissemination Engine part of the FDE, as well as
on creating the hooks and the interfaces to the Fault-
Diagnosis/Localization/Isolation functions and the Autonomic
Node Manager (ANM) part of an autonomic node that
composes, manages and oversees the overall behavior of the
node’s functional entities. The figures that follow present some
selected samples of information flow and interaction flow
sequence diagrams that illustrate the functions of the API’s that
were specified and designed for the ANA architecture. On the
diagrams, the operation/primitive “reasonForAnIncident” or
“reasonForAnAlarm” is meant to request the FDLI functions to
reason about an incident or alarm i.e. find out the cause.

Figure 3: Sequence diagram for Alarm handling within the

FDE after a local functional block has generated an alarm.

 4

Figure 4: Sequence diagram of the listener version for

alarm handling within the FDE after a local functional

block has generated an Alarm

Figure 5: Processing a remotely generated alarm

Figure 6: Processing a local incident that was detected on

the local node

Figure 7: Handling of a network incident that was

detected on the local node

Figure 8: Processing of incident information coming from

the network via the local IDE

Figure 9: The actions to be undertaken by a periodical

behaviour of an Incident storage Repository concerning

any uncleared incidents. * denotes an arbitrary registry

and the flag “incidentNotCleared” contains the state of

the particular incident – failure/error/fault.

V. EXAMPLE SCENARIOS FOR AUTONOMIC FAULT-

MANAGEMENT

The following figures (figures 10 and 11) illustrate simple

cases of a complete sequence of actions on how autonomic

Fault-management can be realized, from the processes of

incident detection through to the ultimate goal of fault-removal,

of which in the cases presented, is simply achieved through

 5

reloading of a faulty entity after it has been localized by FDLI

functions.

Figure 10: Local incident scenario - An abstract scenario

of Autonomic Fault-Management in the context of the

UniFAFF framework.

Figure 11: Locally generated alarm scenario - An abstract

scenario of Autonomic Fault-Management in the context

of the UniFAFF framework.

VI. EVALUATION OF SELECTED KEY COMPONENTS OF THE

UNIFAFF FRAMEWORK IMPLEMENTED FOR ANA NETWORKS

Figure 12 provides a description of the test scenario used to
validate the functionalities of the implemented FDE bricks.
The simulation facilities of the ANA project (vlink) were used
to create the test scenario. A vlink virtual physical layer was

created on a single computer (Intel(R) Pentium(R) M processor
1.60GH, 509.2 MB RAM), and three ANA nodes were
attached to it. The ANA nodes were then able to communicate
over the vlink using the Ethernet compartment. Four client
bricks were created for evaluation purposes.

• usrBrickFDE1 – This brick acts as an incident-
detector and alarm-generator and submits the corresponding
information to the CDE repositories on the local node.
Subsequently this brick queries the repositories to check
whether the retrieval of knowledge works correctly. At the end,
the brick submits again incident and alarm knowledge to the
registries thereby using the listener mechanisms of a repository
to trigger the dissemination of the knowledge to interested local
clients and to the network.

• usrBrickFDE2 – This brick registers for receiving
information of interest from the Local Incidents
Repository.

• usrBrickFDE3 – This brick registers at the IDE of the
local node (using API-e) for receiving information about
incidents and alarms stored in the repositories.

• usrBrickFDE4 – This brick registers at the External
Incidents Repository for receiving information of
interest upon its arrival.

The order of the actions that are issued by the different test
bricks is given by their enumeration in Figure 12. Next we go
through the numbered processes triggered by those actions:

1 stands for “Registering at the Local Incidents Repository
in order to receive Incident Information & Registering at the
Alarms Repository for receiving Alarm Information”.

2 stands for “Registering at the IDE for receiving
Alarm/Incident Information”.

3 represents the process of “Registering at the External
Incidents Repository & Alarms Repository for receiving
Incident & Alarm Information of Interest”.

4 stands for “Storing Alarm & Incidents Information into
the FDE Repositories”.

4.1 represents the process of “Querying the FDE
Repositories”.

5 stands for “Storing Information in one of the Incident
Repositories and Triggering Dissemination”.

5.* denotes all the listener/callback information consumer
actions that follow 5 and could be named “Getting
Incident/Alarm Information from the corresponding Repository
after a successful registration”.

 6

The bricks and the test environment described in Figure 12

have been used to execute different

performance test and to check the

stability of the UniFAFF

components, designed and

implemented in [3]. In order to

achieve this, the brick acting as an

incident-detector and an alarm-

generator has been adjusted, so that it

behaves as if “detecting” an incident

and generates an alarm every three

seconds and repeats this procedure

255 times. Every time the submitted

information ran through the whole

chain – 1, 2, 3, 4, 4.1, 5, and 5.* -

thereby examining the stability of all

possible aspects like listener

mechanisms, querying, dissemination

of information to interested local

clients, dissemination of information

over the Ethernet compartment using

flooding or gossiping, etc. Thereby

the system proved to be stable in

general. However, some small

problems were observed:

• The periodical tasks (behaviour) of

Repositorries/Registries (see Figure 9) that are

responsible for the dissemination of uncleared

alarm/incident information managed to overload the

IDE with the dissemination of more than 200 event

models at one point in time. This means that some

mechanism for restricting the amount of information

sent at once by the periodical task of a repository has

to be considered (a subject for further research).

• The other problem that was observed is related to the

querying service supported by a repository – it seems

to be problematic for the ANA core (Ubuntu-linux

based), in that environment, to deliver a message that

is bigger than somewhere around 33 000 bytes, which

implies the fact that very large query responds (more

than 80 objects) could not be delivered back to the

requesting brick.

Additionally the top [7] was used to measure the amount of

memory used during the performance test. The measurements

indicated that for storing 255 detected-incident objects and

255 alarm objects in each of the three virtual ANA nodes (this

means a total amount of 255x3=765 alarm and 765 detected

incident objects), a total amount of 9140 Kbyte was consumed.

This seems to be a good result, but should also be accepted as

a warning that a garbage collection mechanism is needed to

periodically swap out some of the alarm/incident information

to an external database or to the file system of a node.

VII. CONCLUSIONS AND FURTHER WORK

The experiences gained in implementing UniFAFF for clean-

slate type of network designs like ANA, though we have not

fully implemented the framework, show that UniFAFF is

indeed applicable in practice for the emerging self-managing

networks, whether based on evolutionary approaches or clean-

slate/revolutionary

approaches. However, it

is worthy mentioning

that in order to

implement the co-

operative processes of

information/knowledge

sharing among network

entities as defined by

the UniFAFF

framework, the

“Requirements” put

forward in the

framework need to be

strictly followed by

developers of the

individual functional

entities of an autonomic

node. The

“Requirements”

themselves as pointed

out in the definition of

the UniFAFF

framework need to be

further refined and

further extended. The other important issue to note is that the

issues proposed in the UniFAFF framework still require a lot of

more research and development in order to have a complete

implementation of the whole framework that allows extensive

evaluations beyond the what we have achieved so far, meaning

that a larger testbed emulating a large scale self-managing

network would be required in order to fully evaluate UniFAFF in

terms of information flow, resource consumption and network

stability. Our further research work will involve further

specification and design of the APIs of the Generic Architecture

of UniFAFF we have not covered so far, and evaluate the

performance and scalability of our design. We also aim at

implementing UniFAFF for an evolutionary approach type of

research towards future internet design in the context of the EU

funded FP7 – EFIPSANS project [8] in order to draw experiences

from both approaches.

REFERENCES

[1] The FCAPS management Framework: ITU-T Rec. M. 3400

[2] R. Chaparadza: UniFAFF: a Unified Framework for Implementing
Autonomic Fault-Management and Failure-Detection for Self-Managing
Networks, International Journal of Network Management, published by
John Wiley & Sons, Copyright John Wiley & Sons 2008.

[3] N. Tcholtchev: Master of Science Thesis: Components and Mechanisms
of Autonomic Fault-Management for Self-Managing Networks,
submitted to the Technical University of Berlin, September 2008, to be
publicly available soon (not yet publicly available as of 09 November,
2008).

[4] R. Chaparadza: Specification of the Failure-Detection and Fault-
Management part of the ANA Architecture (v1), ANA Project
Deliverable D.3.5v1, publicly available under: http://www.ana-
project.org.

[5] C. Jelger and S. Schmid: ANA Blueprint (version 2), February 2008.
ANA Deliverable D.1.4/5/6v2, available on http://www.ana-project.org

[6] M. Sifalakis: First Draft of the Functional Composition Framework, 15th
February 2008, Deliverable D.2.4, available on http://www.ana-
project.org

[7] The top man page: http://linux.die.net/man/1/top: as of date: 03.09.2008

[8] EC funded- FP7-EFIPSANS Project: http://efipsans.org/

Figure 12: A description of the test scenario used to

validate the functionalities of the FDE

